Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Sci Rep ; 14(1): 10108, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698005

Pulmonary tuberculosis (TB) can result in irreversible damage and lead to tuberculous destructive lung (TDL), a severe chronic lung disease that is associated with a high mortality rate. Additionally, pulmonary hypertension (PH) is a hemodynamic disorder that can be caused by lung diseases. The objective of this study is to investigate the risk factors associated with PH in active TB patients diagnosed with TDL. We conducted a retrospective review of the medical records of 237 patients who were diagnosed with TDL, active pulmonary tuberculosis, and underwent echocardiography at the Third People' Hospital of Shenzhen from January 1, 2016, to June 30, 2023. Univariate and multivariate logistic regression analyses were performed to identify factors that correlated with the development of pulmonary hypertension. Univariate and multivariate logistic regression analyses revealed that several factors were associated with an increased risk of pulmonary hypertension (PH) in individuals with tuberculosis destroyed lung (TDL). These factors included age (OR = 1.055), dyspnea (OR = 10.728), D-dimer (OR = 1.27), PaCO2 (OR = 1.040), number of destroyed lung lobes (OR = 5.584), bronchiectasis (OR = 3.205), and chronic pleuritis (OR = 2.841). When age, D-dimer, PaCO2, and number of destroyed lung lobes were combined, the predictive value for PH in patients with TDL was found to be 80.6% (95% CI 0.739-0.873),with a sensitivity of 76.6% and specificity of 73.2%. Advanced age, elevated D-dimer levels, hypercapnia, and severe lung damage were strongly correlated with the onset of PH in individuals with active pulmonary tuberculosis (PTB) and TDL. Furthermore, a model incorporating age, D-dimer, PaCO2, and the number of destroyed lung lobes might be valuable in predicting the occurrence of PH in patients with active PTB and TDL.


Hypertension, Pulmonary , Tuberculosis, Pulmonary , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/complications , Male , Female , Middle Aged , Risk Factors , Retrospective Studies , Tuberculosis, Pulmonary/complications , Adult , Lung/pathology , Lung/diagnostic imaging , Aged , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism
2.
Cell Death Discov ; 10(1): 177, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627379

Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.

3.
Schizophr Res ; 267: 1-7, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38492529

The prevalence of late-life schizophrenia is increasing with high burden. It is well-documented that schizophrenia affects men and women differently in terms of symptoms. Sex hormones, which play a role in the pathology and symptoms of schizophrenia, are greatly affected by aging. To the best of our knowledge, this is a study to examine the sex differences in psychiatric symptoms and their correlation with sex hormones in participants with late-life schizophrenia. Positive and Negative Syndrome Scale (PANSS) factors were evaluated. Testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, and prolactin were measured. Male participants with late-life schizophrenia had more severe negative symptoms than female participants (z = -2.56, P = 0.010), while female participants had more severe anxiety/depression compared to male participants (z = 2.64, P = 0.008). Testosterone levels in male participants were positively associated with negative symptoms (ß = 0.23, t = 2.27, P = 0.025), while there was no significant association between sex hormones and symptoms in female participants. In conclusion, higher testosterone levels were associated with more severe negative symptoms in male participants with late-life schizophrenia, suggesting that attention should be paid to the sex differences in late-life schizophrenia in clinical practice.

4.
BMC Infect Dis ; 24(1): 122, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38262989

The Xpert MTB/RIF test (Xpert) can help in the accurate screening of tuberculosis, however, its widespread use is limited by its high cost and lack of accessibility. Pooling of sputum samples for testing is a strategy to cut expenses and enhance population coverage but may result in a decrease in detection sensitivity due to the dilution of Mycobacterium tuberculosis (Mtb) by sample mixing. We investigated how the mixing ratio affected the detection performance of Xpert. We used frozen sputum samples that had been kept after individual Xpert assays of the sputa from Mtb-confirmed TB patients and non-TB patients. Our results showed that the overall sensitivity of the Xpert pooling assay remained higher than 80% when the mixing ratio was between 1/2 and 1/8. When the mixing ratio was raised to 1/16, the positive detection rate fell to 69.0%. For patients with either a high sputum Mtb smear score ≥ 2+, a time-to-positive culture ≤ 10 days, or an Xpert test indicating a high or medium abundance of bacteria, the pooling assay positivity rates were 93.3%, 96.8%, and 100% respectively, even at a 1/16 mixing ratio. For participants with cavities and cough, the pooling assay positivity rates were 86.2% and 90.0% at a 1/8 ratio, higher than for those without these signs. Our results show that the Xpert pooled assay has a high overall sensitivity, especially for highly infectious patients. This pooling strategy with lower reagent and labor costs could support TB screening in communities with limited resources, thereby facilitating reductions in the community transmission and incidence of TB worldwide.


Mycobacterium tuberculosis , Tuberculosis , Humans , Sputum , Cough , Biological Assay
5.
J Hazard Mater ; 465: 133175, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38086305

Fog significantly affects the air quality and human health. To investigate the health effects and mechanisms of atmospheric fine particulate matter (PM2.5) during fog episodes, PM2.5 samples were collected from the coastal suburb of Qingdao during different seasons from 2021 to 2022, with the major chemical composition in PM2.5 analyzed. The oxidative potential (OP) of PM2.5 was determined using the dithiothreitol (DTT) method. A positive matrix factorization model was adopted for PM2.5. Interpretable machine learning (IML) was used to reveal and quantify the key components and sources affecting OP. PM2.5 exhibited higher oxidative toxicity during fog episodes. Water-soluble organic carbon (WSOC), NH4+, K+, and water-soluble Fe positively affected the enhancement of DTTV (volume-based DTT activity) during fog episodes. The IML analysis demonstrated that WSOC and K+ contributed significantly to DTTV, with values of 0.31 ± 0.34 and 0.27 ± 0.22 nmol min-1 m-3, respectively. Regarding the sources, coal combustion and biomass burning contributed significantly to DTTV (0.40 ± 0.38 and 0.39 ± 0.36 nmol min-1 m-3, respectively), indicating the significant influence of combustion-related sources on OP. This study provides new insights into the effects of PM2.5 compositions and sources on OP by applying IML models.

6.
Int Immunopharmacol ; 127: 111262, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38101216

Intervertebral disc (IVD) degeneration (IDD), an age-related degenerative disease, is accompanied by the accumulation of senescent nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation. The current study aims to clarify the role of M1 macrophages in the senescence of NP cells, and further explores whether bardoxolone methyl (CDDO-Me) can alleviate the pathological changes induced by M1 macrophages and relieve IDD. On the one hand, conditioned medium (CM) of M1 macrophages (M1CM) triggered senescence of NP cells and ECM degradation in a time-dependent manner. On the other hand, CM of senescent NP cells (S-NPCM) was collected to treat macrophages and we found that S-NPCM promoted the migration and M1-polarization of macrophages. However, both of the above effects can be partially blocked by CDDO-Me. We further explored the mechanism and found that M1CM promoted the expression level of STING and nuclear translocation of P65 in NP cells, while being restrained by CDDO-Me and STING inhibitor H151. In addition, the employment of Nrf2 inhibitor ML385 facilitated the expression level of STING and nuclear translocation of P65, thereby blocking the effects of CDDO-Me on suppressing senescence of NP cells and ECM degradation. In vivo, the injection of CDDO-Me into the disc decreased the infiltration of M1 macrophages and ameliorated degenerative manifestations in the puncture-induced rat IDD model. In conclusion, CDDO-Me was proved to break the vicious cycle between M1 macrophages and senescent NP cells through the Nrf2/STING/NF-κB pathway, thereby attenuating the progression of IDD.


Intervertebral Disc Degeneration , Nucleus Pulposus , Oleanolic Acid , Rats , Animals , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism
7.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article En | MEDLINE | ID: mdl-38003571

(1) Annexins are proteins that bind phospholipids and calcium ions in cell membranes and mediate signal transduction between Ca2+ and cell membranes. They play key roles in plant immunity. (2) In this study, virus mediated gene silencing and the heterologous overexpression of TaAnn12 in Arabidopsis thaliana Col-0 trials were used to determine whether the wheat annexin TaAnn12 plays a positive role in plant disease resistance. (3) During the incompatible interaction between wheat cv. Suwon 11 and the Puccinia striiformis f. sp. tritici (Pst) race CYR23, the expression of TaAnn12 was significantly upregulated at 24 h post inoculation (hpi). Silencing TaAnn12 in wheat enhanced the susceptibility to Pst. The salicylic acid hormone contents in the TaAnn12-silenced plants were significantly reduced. The overexpression of TaAnn12 in A. thaliana significantly increased resistance to Pseudomonas syringae pv. tomato DC3000, and the symptoms of the wild-type plants were more serious than those of the transgenic plants; the amounts of bacteria were significantly lower than those in the control group, the accumulation of Reactive Oxygen Species (ROS)and callose deposition increased, and the expression of resistance-related genes (AtPR1, AtPR2, and AtPR5) significantly increased. (4) Our results suggest that wheat TaAnn12 resisted the invasion of pathogens by inducing the production and accumulation of ROS and callose.


Arabidopsis , Basidiomycota , Disease Resistance , Reactive Oxygen Species/metabolism , Triticum/microbiology , Annexins/metabolism , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Plant Diseases/microbiology , Basidiomycota/metabolism
8.
Signal Transduct Target Ther ; 8(1): 260, 2023 07 05.
Article En | MEDLINE | ID: mdl-37402714

Traumatic brain injury (TBI) accelerates fracture healing, but the underlying mechanism remains largely unknown. Accumulating evidence indicates that the central nervous system (CNS) plays a pivotal role in regulating immune system and skeletal homeostasis. However, the impact of CNS injury on hematopoiesis commitment was overlooked. Here, we found that the dramatically elevated sympathetic tone accompanied with TBI-accelerated fracture healing; chemical sympathectomy blocks TBI-induced fracture healing. TBI-induced hypersensitivity of adrenergic signaling promotes the proliferation of bone marrow hematopoietic stem cells (HSCs) and swiftly skews HSCs toward anti-inflammation myeloid cells within 14 days, which favor fracture healing. Knockout of ß3- or ß2-adrenergic receptor (AR) eliminate TBI-mediated anti-inflammation macrophage expansion and TBI-accelerated fracture healing. RNA sequencing of bone marrow cells revealed that Adrb2 and Adrb3 maintain proliferation and commitment of immune cells. Importantly, flow cytometry confirmed that deletion of ß2-AR inhibits M2 polarization of macrophages at 7th day and 14th day; and TBI-induced HSCs proliferation was impaired in ß3-AR knockout mice. Moreover, ß3- and ß2-AR agonists synergistically promote infiltration of M2 macrophages in callus and accelerate bone healing process. Thus, we conclude that TBI accelerates bone formation during early stage of fracture healing process by shaping the anti-inflammation environment in the bone marrow. These results implicate that the adrenergic signals could serve as potential targets for fracture management.


Brain Injuries, Traumatic , Fracture Healing , Mice , Animals , Fracture Healing/genetics , Bone Marrow , Myelopoiesis , Mice, Knockout , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/complications , Adrenergic Agents
9.
Small ; 19(43): e2303775, 2023 Oct.
Article En | MEDLINE | ID: mdl-37357162

The compatibility of crystallinity, stability, and functionality in covalent organic frameworks (COFs) is challenging but significant in reticular chemistry and materials science. Herein, it is presented for the first time a strategy to synthesize directly amino-functionalized COF with stable benzodiimidazole linkage by regioselective one-step cyclization and aromatization. Bandrowski's base with two types of amino groups is used as a unique monomer, providing not only construction sites for the material framework through specific region-selective reaction, but also amino active sites for functionality, which is usually difficult to achieve directly in COF synthesis because amino groups are the participants in COF bonding. In addition, the aromatic benzodiimidazole rings and the large conjugated system of the product effectively improve the crystallinity and stability, so that the as-prepared BBCOF remains unchanged in both acid and base solutions, which is obviously better than the conventional imine-linked COF. Impressively, the significantly enhanced conjugation degree by the benzodiimidazole structure also endows BBCOF with an efficient photocatalytic reduction of uranyl ion, with removal rate as high as 96.6% in single-ion system and 95% in multi-ion system. This study is of great importance to the design and synthesis of functional COFs with a commendable trade-off among crystallinity, stability, and functionality.

10.
Am J Pathol ; 193(7): 960-976, 2023 07.
Article En | MEDLINE | ID: mdl-37088454

Intervertebral disc (IVD) degeneration (IVDD) is usually accompanied by nucleus pulposus (NP) fibrosis and pathologic angiogenesis, which are possibly associated with macrophage infiltration. Previous research indicates a destructive role of macrophages and the protective effect of inhibiting heat shock protein 90 (HSP90) in IVDD. Herein, the effects of inhibiting HSP90 on NP fibrosis and pathologic angiogenesis induced by macrophages were investigated further. Single-cell RNA-sequencing analysis was used to classify fibrotic NP cell (NPC) clusters and healthy NPC clusters in human NP tissues. The fibrotic NPC clusters were possibly associated with angiogenesis-related biological processes. Immunostaining showed the spatial association between blood vessel ingrowth and macrophage infiltration, as well as elevated levels of cell migration-inducing protein (CEMIP) and vascular endothelial growth factor A in severely degenerated human IVD tissues. Particularly, HSP90 inhibitor tanespimycin (17-AAG) ameliorated macrophage-induced fibrotic phenotype of NPCs via inhibiting CEMIP. M2, but not M1, macrophages promoted the pro-angiogenic ability of endothelial cells, which was attenuated by 17-AAG or HSP90 siRNA. Reversing the fibrotic phenotype of NPCs by Cemip siRNA also mitigated the pro-angiogenic effects of M2-conditioned medium-treated NPCs. Moreover, the murine IVDD model supported the 17-AAG-induced amelioration of NP fibrosis and endothelial cell invasion in IVD tissues. In conclusion, inhibiting HSP90 attenuated two interrelated pathologic processes, NP fibrosis and pathologic angiogenesis, induced by macrophages via down-regulating CEMIP.


Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Mice , Animals , Nucleus Pulposus/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Cell Movement , Heat-Shock Proteins , Neovascularization, Pathologic/pathology , Macrophages/metabolism , Fibrosis , RNA, Small Interfering/metabolism
11.
Biomaterials ; 296: 122089, 2023 05.
Article En | MEDLINE | ID: mdl-36898223

Cancer immunotherapy, despite its enormous application prospect, is trapped in the abnormal lactic acid metabolism of tumor cells that usually causes an immunosuppressive tumor microenvironment (ITM). Inducing immunogenic cell death (ICD) not only sensitizes cancer cells to carcer immunity, but also leads to a great increase in tumor-specific antigens. It improves tumor condition from "immune-cold" to "immune-hot". Herein, a near-infrared photothermal agent NR840 was developed and encapsulated into tumor-targeted polymer DSPE-PEG-cRGD and carried lactate oxidase (LOX) by electrostatic interaction, forming self-assembling "nano-dot" PLNR840 with high loading capacity for synergistic antitumor photo-immunotherapy. In this strategy, PLNR840 was swallowed by cancer cells, then dye NR840 was excited at 808 nm to generate heat inducing tumor cell necrosis, which further caused ICD. LOX could serve as a catalyst, reducing lactic acid efflux via regulation of cell metabolism. More importantly, the consumption of intratumoral lactic acid could substantially reverse ITM, including promoting the polarization of tumor-associated macrophages from M2 to M1 type, inhibiting the viability of regulatory T cells for sensitizing photothermal therapy (PTT). After the combination of αPD-L1 (programmed cell death protein ligand 1), PLNR840 restored CD8+ T-cell activity that thoroughly cleaned the pulmonary metastasis of breast cancer in 4T1 mouse model and cured hepatocellular carcinoma in Hepa1-6 mouse model. This study provided an effective PTT strategy to boost "immune-hot" and reprogrammed tumor metabolism for antitumor immunotherapy.


Neoplasms , Phototherapy , Animals , Mice , Phototherapy/methods , Cell Line, Tumor , Immunotherapy/methods , Polymers , Combined Modality Therapy , Antigens, Neoplasm , Tumor Microenvironment , Neoplasms/therapy
12.
Front Chem ; 11: 1114434, 2023.
Article En | MEDLINE | ID: mdl-36817173

Introduction: Mitochondria-targeted low-temperature photothermal therapy (LPTT) is a promising strategy that could maximize anticancer effects and overcome tumor thermal resistance. However, the successful synthesis of mitochondria-targeted nanodrug delivery system for LPTT still faces diverse challenges, such as laborious preparations processes, low drug-loading, and significant systemic toxicity from the carriers. Methods: In this study, we used the tumor-targeting folic acid (FA) and mitochondria-targeting berberine (BBR) derivatives (BD) co-modified polyethylene glycol (PEG)-decorated graphene oxide (GO) to synthesize a novel mitochondria-targeting nanocomposite (GO-PEG-FA/BD), which can effectively accumulate in mitochondria of the osteosarcoma (OS) cells and achieve enhanced mitochondria-targeted LPTT effects with minimal cell toxicity. The mitochondria-targeted LPTT effects were validated both in vitro and vivo. Results: In vitro experiments, the nanocomposites (GO-PEG-FA/BD) could eliminate membrane potential (ΔΨm), deprive the ATP of cancer cells, and increase the levels of reactive oxygen species (ROS), which ultimately induce oxidative stress damage. Furthermore, in vivo results showed that the enhanced mitochondria-targeted LPTT could exert an excellent anti-cancer effect with minimal toxicity. Discussion: Taken together, this study provides a practicable strategy to develop an ingenious nanoplatform for cancer synergetic therapy via mitochondria-targeted LPTT, which hold enormous potential for future clinical translation.

13.
Chem Sci ; 14(4): 1010-1017, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36755714

Photothermal therapy (PTT) has emerged as one of the important strategies for cancer treatment due to its precision and no drug resistance. However, upregulation of heat shock protein (HSP) expression during PTT severely limits its overall therapeutic effect. Accordingly, in this study, we developed a new anticancer strategy based on an l-glutathione (GSH)-activated prodrug (Cy-S-S-Cbl), which consisted of an alkylating reagent (Cbl) covalently linked to a photothermal photosensitizer (Cy7), to achieve cooperatively enhanced photothermal-chemotherapy. In the presence of overexpressed GSH in cancer cells, Cy-S-S-Cbl was converted into Cy-NH2 to achieve photothermal effect enhancement by the photo-induced electron transfer (PET) effect and release the alkylation reagent. Meanwhile, the photothermal effect of Cy-NH2 enhanced the DNA alkylation of chemotherapy drugs. Surprisingly, we first found that the therapeutic efficacy of PTT was improved owing to the down-regulation of heat shock protein 70 (HSP70) by chemotherapy. The two treatments had a synergistic promotion effect achieving higher cancer cell killing efficiency. Under 808 nm light irradiation, Cy-S-S-Cbl could effectively realize selective killing of cancer cells and tumor growth inhibition. Therefore, we strongly believe that this efficient cooperative design strategy will provide a new idea to improve the treatment efficiency of prodrugs.

14.
Bone Res ; 11(1): 4, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36596773

The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data, which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS. The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential mechanism of tumor immune escape. Of note, CD24 was identified as a novel "don't eat me" signal that contributed to the immune evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted immunotherapy could be a promising approach to treat OS.

15.
Int Orthop ; 47(4): 1089-1099, 2023 04.
Article En | MEDLINE | ID: mdl-36719445

PURPOSE: Intertrochanteric femoral fractures (IFF) are one of the most common traumatic conditions, but there are no established treatment methods for this condition due to implant failure and re-operation rates. The proximal femoral bionic nail (PFBN), which is a new design of the cephalomedullary nail, was developed by our team. The objective of this study was to assess the clinical and radiographic outcomes of PFBN in patients with unstable IFF. METHODS: From October 2020 to August 2021, 12 patients diagnosed with unstable IFF (31-A2, 3) were treated with PFBN at the Third Hospital of Hebei Medical University. We evaluated the clinical therapeutic effects of this treatment by measuring peri-operative indicators and post-operative complications. Clinical outcomes, specific radiographic parameters, and post-operative complications were collected and analyzed within the first post-operative year. RESULTS: The average age of the patients was 72.4 ± 16.1 years (five males and seven females). The mean operation time was 90.4 ± 16.0 min, whereas the operation time of 31-A2 fractures (83.1 ± 12.2 min) was shorter than that of 31-A3 fractures (105.0 ± 12.9 min) (p < 0.05). The blood loss was 175 ml (range: 50 to 500 ml), and the length of hospitalization was 10.0 ± 1.9 days. The prognosis evaluation was assessed at three, six and 12 months after the operation; for these time points, the Harris hip scores were 69.6 ± 4.1, 77.8 ± 3.8, and 82.6 ± 4.6, respectively, and the Parker-Palmer scores were 5.3 (5.0, 7.0), 6.3 (5.3, 7.0), and 7.8 (7.0, 8.0), respectively. CONCLUSION: PFBN has shown advantages in the treatment of unstable IFF (particularly in geriatric patients) and possesses both stability and safety. This innovative method may provide a new option for treating unstable IFFs.


Femoral Fractures , Fracture Fixation, Intramedullary , Hip Fractures , Male , Female , Humans , Aged , Middle Aged , Aged, 80 and over , Fracture Fixation, Intramedullary/adverse effects , Fracture Fixation, Intramedullary/methods , Bone Nails , Bionics , Hip Fractures/diagnostic imaging , Hip Fractures/surgery , Fracture Fixation, Internal/methods , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery , Retrospective Studies , Femoral Fractures/surgery
16.
Acta Biomater ; 157: 91-107, 2023 02.
Article En | MEDLINE | ID: mdl-36427687

Injectable granular gels consisting of densely packed microgels serving as scaffolding biomaterial have recently shown great potential for applications in tissue regeneration, which allow administration via minimally invasive surgery, on-target cargo delivery, and high efficiency in nutrient/waste exchange. However, limitations such as insufficient mechanical strength, structural integrity, and uncontrollable differentiation of the encapsulated cells in the scaffolds hamper their further applications in the biomedical field. Herein, we developed a new class of granular gels via bottom-up assembly of cell-laden microgels via photo-triggered imine-crosslinking (PIC) chemistry based on the microfluidic technique. The particulate nature of the granular gels rendered them with shear-thinning and self-healing behavior, thereby functioning as an injectable and adaptable cellularized scaffold for bone tissue regeneration. Specifically, single cell-laden, monodisperse microgels composed of methacrylate- and o-nitrobenzene-functionalized hyaluronic acid and gelatin were prepared using a high-throughput microfluidic technique with a production rate up to 3.7 × 108 microgels/hr, wherein the PIC chemistry alleviated the oxygen inhibition on free-radical polymerization and facilitated enhanced fabrication accuracy, accelerated gelation rate, and improved network strength. Further in vitro and in vivo studies demonstrated that the microgels can serve as carriers to support the activity of the encapsulated mesenchymal stem cells; these cell-laden microgels can also be used as cellularized bone fillers to induce the regeneration of bone tissues as evidenced by the in vivo experiment using the rat femoral condyle defect model. In general, these results represent a significant step toward the precise fabrication of engineered tissue mimics with single-cell resolution and high cell-density and can potentially offer a powerful tool for the design and applications of a next generation of tissue engineering strategy. STATEMENT OF SIGNIFICANCE: Using microfluidic droplet-based technology, we hereby developed a new class of injectable and moldable granular gels via bottom-up assembly of cell-laden microgels as a versatile platform for tissue regeneration. Phototriggered imine-crosslinking chemistry was introduced for microgel cross-linkage, which allowed for the fabrication of microgels with improved matrix homogeneity, accelerated gelation process, and enhanced mechanical strength. We demonstrated that the microgel building blocks within the granular gels facilitated the proliferation and differentiation of the encapsulated mesenchymal stem cells, which can further serve as a cellularized scaffold for the treatment of bone defects.


Microfluidics , Microgels , Rats , Animals , Gels/chemistry , Biocompatible Materials/chemistry , Bone Regeneration , Tissue Engineering/methods , Hydrogels/chemistry
17.
Front Aging Neurosci ; 14: 1001447, 2022.
Article En | MEDLINE | ID: mdl-36329872

Facial emotion recognition plays an important role in social functioning. Patients with late-life depression (LLD) often have abnormal facial emotion recognition. Mindfulness-based cognitive therapy (MBCT) is beneficial in treating depression. This study examined whether MBCT can act as an effective augmentation of antidepressants and improve facial emotion recognition in patients with LLD and its underlying neural mechanism. Patients with LLD were randomized into two groups (n = 30 per group). The MBCT group received an eight-week MBCT in conjunction with stable medication treatment. The other group was treated as usual (TAU group) with stable medication treatment. The positive affect (PA) scale, negative affect (NA) scale, and facial emotion recognition task with an fMRI scan were performed before and after the trial. After eight weeks of treatment, the repeated ANOVA showed that the PA score in the MBCT group significantly increased [F (1,54) = 13.31, p = 0.001], but did not change significantly [F (1,54) = 0.58, p = 0.449] in the TAU group. The NA scores decreased significantly in both the MBCT group [F (1,54) = 19.01, p < 0.001] and the TAU group [F (1,54) = 16.16, p < 0.001]. Patients showed an increase in recognition accuracy and speed of angry and sad faces after 8 weeks of MBCT. No improvement was detected in the TAU group after treatment. A significant interaction effect was found in the change of activation of the left superior temporal gyrus (L-STG) to negative emotional expression between time and groups. Furthermore, a decrease in activation of L-STG to negative emotional expression was positively correlated with the increase in PA score. The MBCT is beneficial for improving affect status and facial emotion recognition in patients with LLD, and the L-STG is involved in this process.

18.
J Orthop Translat ; 37: 163-172, 2022 Nov.
Article En | MEDLINE | ID: mdl-36380883

As a controllable biological process, regulated cell death (RCD) extensively participates in cellular homeostasis, organismal development, and the pathogenesis of diseases. This review addresses the research gaps by synthesising the findings on the complexity of RCD modes and their role in disc degeneration, and summarises the preclinical strategies to alleviate disc degeneration and promote disc repair by regulating RCD. Background: Intervertebral disc degeneration (IDD) is the major source of chronic low back pain. As a controllable biological process, regulated cell death (RCD) extensively participates in the pathogenesis of IDD. Nevertheless, the initiation and progression of RCD remain unclear, and more importantly, the interaction between different RCD modes during IDD and therapy is far from well understood. Methods: Literature search was performed using "regulated cell death AND intervertebral disc degeneration" in PubMed, Embase, and Web of Science. Meanwhile, relevant findings have been reviewed and quoted. Results: In this review, we discuss the inducing factors of IDD, various modes of RCD in intervertebral disc, the interactions between different RCD modes, as well as the obstacles to achieve disc regeneration. Meanwhile, the research gaps and perspective in studies that targeting RCD are also presented. Conclusion: Increasing evidence demonstrated the presence of different RCD modes in intervertebral disc during the progression of IDD. RCD in the resident disc cells is probably induced by the multiple factors such as abnormal mechanical loading, nutritional imbalance, inflammation microenvironment, circadian rhythm changes, withdraw of hormones, and other biomechanical factors. A better understanding of the fundamental mechanisms and the interactions between different RCD modes might contribute to the rescuing of disc degeneration and development of promising therapeutics. Translational potential statement: The Translational potential of this article. This review aims to demonstrate a better understanding of the fundamental mechanisms governing RCD, which might contribute to the rescuing of disc degeneration and to the development of promising therapeutics in a clinical setting.

19.
Int J Nanomedicine ; 17: 5491-5510, 2022.
Article En | MEDLINE | ID: mdl-36438608

Background: Although chemodynamic therapy (CDT) has attracted enormous attention in anti-tumor studies for converting endogenous hydrogen peroxide (H2O2) into toxic hydroxyl radicals (•OH) by Fenton-type reaction, the treating effects of using CDT alone is still unsatisfying. Recently, glucose oxidase (GOx) was reported to be co-delivered with Fenton agent for synergistic starvation therapy (ST) and CDT. However, the overexpressed glutathione (GSH) and hypoxia in tumor microenvironment (TME) restrict the therapeutic efficacy of ST/CDT. Methods and Results: In this work, a novel nanoplatform composed of GOx plus Fenton agent (Cu2+) encapsulated core and metformin (MET)-loaded manganese dioxide nanosheets (MNSs) shell was prepared and further functionalized by arginine-glycine-aspartate (RGD). With the RGD-mediated affinity with cancer cells, the nanocomposite (GOx-CuCaP@MNSs-MET@PEG-RGD, GCMMR) could accomplish targeting delivery and TME-activated release of cargos. The intracellular GSH was depleted by MnO2/Cu2+ and abundant H2O2 was generated along with the GOx-induced glucose deprivation, which process was further enhanced by MET-mediated hypoxia relief via inhibiting mitochondria-associated respiration. Subsequently generated •OH from Cu+-mediated Fenton-like reaction exerts severe intracellular oxidative stress and cause apoptosis. Moreover, significant inhibition of tumor growth was detected in a subcutaneous xenograft model of osteosarcoma (OS) after GCMMR treatment. Conclusion: The excellent therapeutic efficacy and biosafety of the nanoplatform were confirmed both in vitro and in vivo. Collectively, this study provides an appealing strategy with catalytic cascade enhancement on targeted ST/CDT for cancer treatment, especially for hypoxic solid tumors.


Bone Neoplasms , Metformin , Nanocomposites , Osteosarcoma , Humans , Manganese Compounds , Hydrogen Peroxide , Oxides , Glutathione , Hypoxia , Respiration , Glucose Oxidase , Tumor Microenvironment
20.
Ecotoxicol Environ Saf ; 247: 114274, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36356530

Inhalation exposure to polycyclic aromatic hydrocarbons (PAHs) from indoor solid fuel combustion poses a high health risk, and PAHs bound to particles with smaller sizes (e.g., PM1.0, aerodynamic diameter ≤ 1.0 µm) should be of particular concern since they can penetrate deep into pulmonary alveoli. However, PAHs bound to PM1.0 was less studied compared with PAHs in total suspended particles or PM2.5. In this study, multiple provincial field measurements were conducted to investigate 28 PAHs bound to PM1.0 in rural Chinese homes. Daily averaged PM1.0-PAH28 concentrations ranged from 27 ng/m3 to 3795 ng/m3 (median: 233 ng/m3) and from 10 ng/m3 to 2978 ng/m3 (median: 87 ng/m3) in indoor and outdoor air, respectively. Higher concentrations were found in northern China in winter due to increased solid fuels consumption for space heating. The ambient pollution was lower during the non-heating season in Eastern China, where clean energy was preferred. Highly toxic congeners were more abundant in indoor air compared with outdoor air. The results of source apportionment revealed that solid fuel combustion was the primary contributor to rural household PM1.0-PAHs, but other sources such as vehicles cannot be overlooked. The transition to cleaner energy can reduce the indoor PM1.0-PAH28 and BaPeq-28 concentrations by 87% and 98%, respectively, and more efficient reduction was observed for highly toxic congeners. The estimated Incremental Lifetime Cancer Risk (ILCR) based on PM1.0-PAH28 ranged from 4.6 × 10-5 to 3.4 × 10-2, far exceeding the acceptable level of 10-6. Over 60% of the ILCR could be attributed to inhalation exposure during childhood and adolescence.


Polycyclic Aromatic Hydrocarbons , Adolescent , Humans , Accidents , Asian People , Inhalation Exposure/adverse effects , China
...